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Fiber-reinforced polymeric composite materials present an orthotropic distribution of their mechanical and
elastic characteristics. This behaviour is mainly due to the fact that the fabric used behaves differently under
the same type of stress, on different directions. The procedure described by our paper enables researchers to
determine the elastic modulus of such materials, on three different directions, using a specially designed
specimen. The finite element analysis revealed that there were no significant influences on the strains and
deformations existing in the measurement area, concerning the shape of the test specimen or its fastening.
The results obtained for three composite materials used to validate the procedure showed that two of the
materials having orthotropic properties, exhibit different elastic modulus.
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The mechanical and elastic characteristics of a
composite material are strongly influenced by the
properties and distribution of its constituents, as well as by
the interactions among them. In addition to the nature and
properties of its constituents, the analysis of a composite
material considered as a system should also refer to the
geometry of the reinforcement in the whole system, which
geometry may be defined by shape, size, proportions and
distribution. Homogeneity is an important characteristic
that determines the extent to which a large portion of
material may differ from the viewpoint of its physical,
mechanical and elastic properties, as compared to the
average properties of the material. System unevenness
should be prevented, as it dictates the properties governed
by the poorest bonds in the material.

Reinforcement orientation affects system isotropy. Let
us consider a piece of homogeneous, elastic and isotropic
material in which we cut up four test specimens having
similar sizes in order to subject them to tensile strength
tests [1] (fig. 1a). If we resort to a graphic representation
of the variations of the normal strain values σ compared
with the specific elongations ε, we notice that the diagrams
of the four test specimens are identical or almost identical,
figure 1b. If the material of the test specimens is isotropic,
the curve identity deviation is blamed on the imperfections
of the testing method: test specimens with size deviations,

wrong specimen fastening in the testing equipment,
reading errors, etc. For a homogeneous and isotropic
material, the strain-deformation ratio depends neither on
the point nor on the direction of the measurement. The
elastic characteristics of such a material are expressed by
two constants: the E longitudinal modulus of elasticity, or
Young’s modulus, and the contraction of transverse strain
ν, or Poisson’s ratio.

If tensile strength tests are performed on test specimens
on the same x and y directions of a unidirectional
reinforcement composite material (fibers on the y
direction, for instance), we notice that the diagrams of the
1 and 1’ test specimens are also identical, as the material
is homogeneous (fig.  1c). On the other hand, the diagrams
of the 1 and 2 test specimens, cut up on the y and x
directions, respectively, are completely different (fig. 1c).
The yield strength does not have the same value in this last
case, and Young’s modulus and Poisson’s ratio are also
different. This material is defined as homogeneous and
anisotropic. Its mechanical and elastic properties do not
depend on the point they refer to, but on the direction of the
tensile strength.

In order to characterize the behaviour of such materials,
that is in order to define the relation between strains and
specific deformations, one should generally know and
therefore determine 36 elastic modulus.

 Fig. 1. Test specimen cutting up for the determination of the elastic characteristics
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Constituent Relations of the Elasticity of an Anisotropic
Material

Constituent or physical equations between strains and
deformations may be generally expressed as a matrix [1]:

              (1)

The ratio (1) may be written as follows:

      (2)

where:
-  are the components of the deformation tensor for

the spatial stress-strain state;
-  are the components of the strain tensor for the

spatial stress-strain state;
-   is called compliance or elasticity matrix.

The   terms are represented by the elastic
characteristics of the material.

Orthotropy is a particular case of anisotropy. Materials
having orthotropic characteristics has 3 elastic
characteristic symmetry planes, figure 2.

The elasticity of the orthotropic material is defined by 9
independent elastic characteristics, as shown in ratio (4).
Considering that the transverse elasticity modulus
(Coulomb) Gij of some materials may be calculated
according to the following ratio:

(5)

in order to define the elastic characteristics of an orthotropic
body, we need 3 Young’s modulus, that is E11, E22 and E33,
and three Poisson’s ratios, that is ν12, ν13 and ν23. We suggest
nonetheless that the Coulomb’s modulus values be
determined on Iosipescu test specimens, cut up separately
and oriented on the directions described herein.

Elastic Modulus Determination using Electrical Resistance
Tensometry

In strength of materials, deformation and stability
calculations, in experimental strain analysis and in finite
element analysis, knowing the elastic characteristics of
the materials that the constituent pieces or items are made
of are absolutely necessary [2-4]. For the experimental
analysis of the strains occurring in the fiber-reinforced
polymeric matrix composite materials, it is wiser to rely
on the material  mechanical and elastic characteristics as
determined by the user and not on the values calculated in
literature. From the viewpoint of the fiber reinforcement
method employed, these materials may be considered
orthotropic. There are several methods employed to
determine the elastic characteristics of these types of
materials, some of which involve the use of electrical
resistance tensometry. This method determines the elastic
characteristics of test specimens subject to tensile strength
testing, according to ASTM D3039. In order to determine
the 6 elastic characteristics described above, we need
three sets of test specimens cut up on the x, y and z
directions, as shown in figure 2. If the piece of material is
thin, the test specimens cannot be cut up on the z direction.
For this same piece of material, we need to determine its
elastic characteristics on a direction forming an up to 450

angle with, for instance, the longitudinal fibers [5]. If this is
the case, a new set of test specimens should be cut up, in
order to be able to determine their elastic characteristics.

This paper describes an experimental procedure able to
determine, on a single specially designed test specimen
(fig. 2) the elastic characteristics of a fiber-reinforced
composite material on three directions belonging to the
same plane.

Electrical resistance tensometry allows high accuracy
specific, longitudinal and transverse deformation
measurements. In order to determine specific
deformations, on a flat tensile strength test specimen with
a cross-section area of S0=(a . b), we fasten bidirectional
electrical-tensometric rosettes (fig. 3). A grid of the TER1
rosette, that is (m1), is guided on the first direction, while
the other, that is (m3), is guided on the third perpendicular
direction. On the opposite side of the test specimen, in the
middle of it, another bidirectional rosette (TER2) is

Fig. 2. Orthotropic material: symmetry planes and main directions

In case of stresses applied to the main material
directions, the constituent relations are mostly known under
the name of Hooke’s law in space and they may also be
described by the following matrix:

(3)

where:

(4)
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fastened, while its grids are laid out on the second, (m2),
and fourth, (m4), directions, respectively. Therefore,
stresses applied on the first direction result in the E11 and
ν13 elastic modulus, stresses applied on the second
direction reveal the E22 and ν24 elastic modulus, while
stresses applied on the third direction result in the E33 and
ν31 elastic modulus.

Electrical-tensometric transducers are introduced in
Wheatstone bridge measuring circuits with quarters of
bridge configurations, which means that each
tensometric mark is balanced according to the circuit
in the tensometric bridge. By using the test specimen
shown in figure 3, we may determine the E and ν  elastic
characteristics on the first, second and third directions
shown in the figure. If we use a test specimen having a
similar shape with that shown in figure 3, it is no longer
necessary to cut up three different test specimens on
the longitudinal first, second and third directions. On
the other hand, when using only this specimen, we are
able to determine only the elastic characteristics
occurring in the middle of the test specimen, while by
cutting up different test specimens, we are able to
determine the same characteristics in different points.
In this case, however, errors may occur due to possible
material imperfections in different areas caused either
by the matrix or the reinforcement, or by the matrix and
reinforcement interface.

Experimental part
In order to calculate Young’s modulus and Poisson’s

ratios on the first and third directions, the m1 and m3
tensometric marks will play, in turns, the role of

longitudinal and transverse marks. Therefore, for a
better data systematization, the following specifications
should be made:

- the m1, m2, m3 and m4 marks are displayed
longitudinally, on proper directions;

- when the stress is applied on the first direction, upon
signal reception, the m1 mark becomes the m1L mark,
and the m3 mark becomes the m3T mark;

- when the stress is applied on the third direction, the
m1 mark becomes the m1T mark, while the m3 mark
becomes the m3L mark;

- when the stress is applied on the second direction,
the m2 mark becomes the m2L mark, and the m4 mark
becomes the m4T mark;

The tensile strength test on the specimens in figure 4
was performed using a universal tensile strength Instron
8801 testing system (fig. 4).

The software of this testing equipment records the data
on all the tests performed on it. Thus, we have access to a
data file including, among others, tensile strength variation
with time. The tensometric mark signals were gathered
using a Vishay P3 bridge. Strength control was applied to
the testing system, while the test was performed at a 0.05
kN/min speed. At the same time, considering that the
minimum data collection sampling rate for the Vishay
bridge is 1 second, we set a similar data collection rate on
the Instron testing system.

For this experiment we used the 3 types of specimens
shown in figure 5, namely:

- a 0.9 mm thick specimen with epoxy resin matrix
reinforced with a single layer of fiber glass;

Fig. 3. Special tensile strength test specimen;
tensometric transducer location

Fig. 4. Tensile strength testing of
octagonal specimens
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curves are drawn for each of the three stress directions
shown in figure 3.

For the first two specimens, which have a single fiber
glass reinforcement layer, the first direction is the warp
direction, the third direction is the weft direction, while the
second direction forms a 450 angle with any of the two
directions described above. The third specimen is a multi-
layer composite, in which the warp directions in two
successive layers are mutually perpendicular.

Here is the actual performance of the tests.
The piece of composite material is subject to tensile

strength tests on the j (1, 2, and 3) directions. The piece of
material also undergoes static charging at low speed and
testing machine strength control. For the stresses applied
on each direction, the tensometric Vishay bridge records
the signals received from the m1, m2, m 3 and m4
tensometric marks. Thus, when stresses are applied on
the first direction, using F1i strengths, the m1 and m3
marks send out the m1L signal, which represents the
specific ε1L elongation, as well as the m3T signal,
standing for the specific transverse ε3T deformation, by
means of which we are able to determine the E11
longitudinal elasticity modulus and ν13 Poisson’s ratio.
Upon stress application on the second direction, using
F2i strengths, the m2 and m4 marks send out the m2L

Fig. 5. Octagonal specimens
submitted to tensile strength testing

- a 1.2 mm thick specimen with epoxy resin matrix
reinforced with a single layer of fiber glass and also copper
coated;

- a 10 mm thick specimen with epoxy resin matrix
reinforced with several layers of fiber glass.

The configuration of the specimens in figure 5 is the
result of the need to achieve stresses on three directions:
0, 45 and 900, as well as to allow their die clamping fig. 4).

The testing system software provides a data file
including strength and/or strain variation with time. By
means of automatic data collection on the tensometric
Vishay bridge, the latter  memory card records the data file
containing specific longitudinal and transverse deformation
variation with time, when the specimen stress is applied
on a particular direction.

If we remove the time factor from the two data files, we
obtain a single file including stress strength (strain) variation
with specific longitudinal and transverse deformations. The
number of measurement points is relatively high further to
the settings performed for the testing speed and the
maximum elastic strength applied to the specimen. Figure
6 shows the strain variation curves on the stress direction,
with the longitudinal and transverse deformations. These

Fig. 6. Strain variation on the stress direction,
with the longitudinal and transverse deformations
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signal, that is the specific ε2L elongation, as well as the
m4T signal representing specif ic transverse ε4T
deformation, by means of which we are able to
determine the E22 longitudinal elasticity modulus and
ν24 Poisson’s ratio. Finally, when stresses are applied on
the third direction, using F3i strengths, the m3 and m1
marks send out the m3L signal, which represents the
specific ε3L elongation, as well as the m1T signal,
standing for the specific transverse ε1T deformation, by
means of which we are able to determine the E33
longitudinal elasticity modulus and ν31 Poisson’s ratio.

Results and discussions
According to figure 7, single fiber layer specimens reveal

significant differences as concerns the strain-deformation
diagrams drawn and the related values, which were
determined for the three stress directions described above.
On the other hand, the multi-layer composite specimen
shows similar curves for the three directions above. If we
consider however the fact that the beginning of the tests is
obviously influenced by the manner in which the
specimens are displayed in the device used for tensile
strength application, we should remove the first data
corresponding to the non-linear portion of the curves in
figure 6. The data are processed in order to calculate the
values of the elastic modulus of the composite
materials on the first, second and third directions, as
shown in figure 3:

- the E longitudinal elasticity modulus (Young’s modulus)
is determined as the gradient of the approximation line of
the graph, formed by the normal strain (σ)/specific
longitudinal deformation (ε) coordinates, through the points
determined by the signals sent out by the longitudinal
transducers;

- the ν contraction of transverse strain (Poisson’s ratio)
is determined by the curve formed by the specific
transverse deformation (ε tr.)/specific longitudinal
deformation (εlong.) coordinates, using signals obtained
from both longitudinal and transverse traducers;

Fig. 7. Strain variation with longitudinal deformation – approximation lines
for longitudinal elasticity modulus determination

- the G transverse elasticity modulus (Coulomb) is
calculated using the E and ν constants, according to the
ratio (5).

The test specimen cross-section is shown by the
S0=a*b [mm2] ratio, with the a and b sizes measured as
shown in figure 3. If we consider the strength values
recorded during the tests, strain is calculated from the
data file, using the ratio: σi=Fi/S0 [N/mm2]. For the
loading of each j stress direction, we draw the strain
variation lines with specific εLelongation, as we
previously discussed (fig.  7). For these curves, we draw
an approximation line that is almost tangent to the last
portion of those curves. Thus, the gradients of the lines in
figure 7 represent the Ejj elasticity modulus of the
composite material on the three stress directions. The Ejj
value for a specific direction is automatically revealed as
the εjj term coefficient of the ratios in the graphs in figure
7. In order to calculate the longitudinal elasticity modulus
in N/mm2, that value must be multiplied by 106.

The contraction of transverse strain (Poisson) is the
proportionality factor between the transverse εT
deformation and the εL longitudinal deformation, which
also being the gradient of the line drawn in the (εT , εL)
coordinates:

(6)

Specific transverse εT deformation is measured using
the m3, m4 and m1 tensometric marks (fig. 3), when the
stress is applied on the first, second and third directions.
These marks send out the signals of the specific transverse
ε3T, ε4T and ε1T deformations. These, together with the
specific ε1L, ε2L and ε4L elongations, form the graphs in
figure 8. For these curves, we draw an approximation
line that is almost tangent to the last portion of those
curves.

Thus, the gradients of the lines already drawn are the
contraction of transverse strain coefficients (Poisson’s
ratio) of the composite νjk material, on the three stress
directions. With Ejj and νjk thus determined, the calculation
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of the transverse elasticity Gjj modulus is possible for the
three stress directions:

Fig. 9. Maps of σ strains on the z-z
stress direction a) and on the y-y

direction, perpendicular to strain b)

Fig. 8. Transverse deformation
variation with longitudinal

a b

concentrators. Consequently, considering both the
configuration of the specimen and its fastening elements,
the measurements performed by the tensometric marks
located in the middle of the test specimen are not
influenced.

Conclusions
The value of the elastic characteristics of fiber-

reinforced polymeric composite materials is important for
resistance, deformation and stability calculations, for
experimental strain analysis and for finite element analysis.
These materials enjoy an orthotropic distribution of their
elastic characteristics. Therefore, the procedure described
in our paper allows elastic characteristic determination
using a single test specimen. The test specimen is
octagonal and has two electrical-tensometric transducers
applied in the middle, on both sides, which transducers
include two superimposed mutually perpendicular marks.
This tensometric mark layout allows determining
deformations in the same point, but on different directions.
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Finite Element Analysis
In order to determine the influence of test specimen

fastening in the testing device, we carried out a finite
element analysis, figure 9. Please note that the finite
element analysis was performed on the specimen
containing the fastening elements shown in figure 5. The
analysis was conducted on a model representing a quarter
of the real test specimen, with the observance of the
limiting conditions imposed by symmetry:

-the elements on the Y axis were prevented from
undergoing Z axis translation and X and Y axes rotations;

-the elements on the Z axis were prevented from
undergoing Y axis translation and X and Z axes rotations.

Figure 9 shows the strains in the central piece of material
subject to mono-axial tensile strength testing, as shown in
figure 3. Figure  9a shows the strain map on the z-z strain
direction, while figure 9b shows the strain map on the y-y
direction, which is perpendicular to the stress direction.
The two figures show that the strains in the middle of the
test specimen, where the electrical-tensometric
transducers are located, are not influenced by the strain
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By way of example, we used, for this paper, three test
specimens of different polymeric composite materials. We
noticed that for the elastic characteristics, both Young’s
modulus and Poisson’s ration, of single-layer reinforcement
materials differed significantly from one stress direction to
the next. Since tensometric mark measurements occur in
the same point, the differences are caused only by the
different stress directions. Finite element analysis revealed
that the results of tensometric mark measurements are
influenced neither by the stress device, nor by the metallic
strengthening coating applied on the specimens in order
to prevent their crushing upon stress application. The
specific longitudinal and transverse deformation results are
recorded by the Vishay P3 bridge, and the strain results are
read on the testing equipment. Therefore, the number of
points used for graph drawing may be rather high.
Polymeric matrix composite materials have a viscous-
plastic behaviour and hence the characteristics curves have
a first nonlinear portion. In consideration of this last finding,
we recommend that the approximation lines be drawn
tangent to the σ-εL and εT-εL curves in the area where the
latter have a linear variation.
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