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The paper presents an algorithm to assess damages in composite structures, based on how natural
frequencies of weak-axes bending vibration modes change due to damage. The authors have contrived a
correlation between the strain energy stored in a segment of a beam-like structure and the frequency
change for that mode if damage occurs on that segment. Finding that the dynamic behavior of composite
structures can be best modeled using the share model, which consider the bending moment together with
lateral displacement and share deformation, we worked out a relation which gives the frequency shift of all
bending modes, involving one coefficient depending on the support type. To evaluate damages, we determine
analytically the relative frequency shift as ratio between the frequency change and the natural frequency of
the undamaged beam, for the more vibration modes, considering a large number of damage scenarios.
Comparing these results with that obtained by measurements on the real structure, it is possible to detect
and locate damages with high precision. The method was validated by numerous experiments.
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Composites as manufactured materials consist from
two or more constituents with quite different physical and/
or chemical properties, which can be identified separately

and distinctively within the finished structure. Unlike to
natural materials which have predefined properties,

composites are elaborated to fulfill predefined needs,
permitting a new approach in structural design [1].
Compared with metals, composites are less heavy and
can attain higher strength properties, which impose them

in numerous engineering applications.

Fiber-reinforced composite materials can be divided

into two categories, continuous fiber-reinforced

composites and short fiber-reinforced composites

respectively. Continuous reinforced composites can have
uni-, bi- or multi-directional fibers as well as woven fibers
and may often constitute a layered or laminated structure.

On the other hand, short fiber-reinforced composites
contain discontinuous, parallel or randomly oriented fibers.

Among continuous fiber-reinforced composites we can
nominate fiberglass or glass-fiber reinforced plastic
(GFRP), carbon-fiber reinforced plastic (CFRP) and Aramid-
fibre reinforced plastic (AFRP). Table 1 presents typical
combinations of fiber and matrix materials of the above
mentioned composites [2 - 4].

Properties of composite reinforcing fibers have strength
and stiffness far above those of traditional bulk materials,
as illustrated in table 2, diluted in combination with the
matrix materials to some degree, but thus very high
specific properties are available from these materials [5].

The fibers can be placed in different layers and oriented
within the material in various directions to obtain desired
propetrties for the composite. Such materials, known as

Reinforcing Material

Usual Matrix Maferials

Glass Fiber Epoxy (EP)
* E-Glass Polyester
= S-Glass Vinylester (VE)
Polyamide (PA or Nylon)
Polycarbonate (PC) Table 1
Polypropylene (PP) TYPICAL FIBER-MATRIX COMBINATIONS
Polybutylene terephthalate (PBT)
Polyoxymethylene (POM or Acetal)
Carbon Fiber Epoxy (most often)
= HS graphite Polyester
= HM graphite Vinylester (VE)
Aramid Fiber Polyamide (PA or Nylon)
Material Young's modulus | Breaking stress | Breaking strain Density
E (GPa) o (GPa) & (%) (kg/m")
E-glass 724 2.4 2.6 2540 Table 2
PHYSICAL AND MECHANICAL
S-glass 85.5 4.5 2.0 2490 PROPERTIES OF FIBERS
HS graphite 253 4.5 1.1 1800
HM graphite 520 24 0.6 1850
Aramid 124 3.6 2.3 1450
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anisotropic, have different properties in different directions;
the control of the anisotropy is an important means of
optimizing the material for specific applications [4, 6].
Consequently, the physical properties of these materials,
like stiffness, will often depend upon the orientation of the
applied forces and/or moments in respect to the fiber
orientation. Though, the final properties of the composite
depend also on the fiber density (specific number of fibers
per cross-section area).

Numerous attempts were made to model composite
materials [1, 7, 8] in order to facilitate proper design of
structures involving composites, especially oriented in
design of new finite elements. The developed models can
be successful involved in static problems, but do not offer
a relation between a possible damage and dynamic
characteristics of the composite structure like natural
frequencies or mode shapes and their derivatives. These
futures are used in global evaluation of structure integrity,
various nondestructive techniques being available for
specific applications [9]. A comprehensive review of
vibration-based damage identification methods can be
found in [10], where are also revealed the limitations and
weaknesses of these methods. To overcome these
problems the authors of this paper have performed an in-
deep research of the phenomena occurring by the
appearance of damages in beams [11] and established a
relation available for all types of beam support and
geometry. It permits, by implying a method also developed
by the authors, an exact location and evaluation of damage
inisotropic materials [ 12]. This paper presents an extension
the damage detection method on anisotropic materials
like layered or sandwich composites.

Vibration-based damage detection method adapted
for composites

Previous work done on this field by the authors, [9, 11,
12], lead to the development of a method proper to detect,
locate and evaluate damage severity in isotropic Euler-
Bernoulli beams. In order to extend the availability of the
method on composites, analytical and numerical
investigations where done as well as experiments. In our
investigations we considered a cantilever steel beam with
length L = 1000 mm; width B = 50 mm and height H = 5
mm. Consequently, for the undamaged state the beam
has the cross-section A = 250-10° m? and the moment of
inertia I = 520.833:10" m*. The material parameters of
the specimens are: mass density p = 7850 kg/m?; Young'’s
modulus E = 2.0-10" N/m?, tensile strength ¢, = 460 MPa,
and Poisson’s ratio pu = 0.3. Afterwards we considered a
composite beam, realized by gluing four groups of layers
(laminae) with different fiber orientations, like shown in
figure 1. The outer laminae groups contain fibers oriented
parallel to the longitudinal axes of the beam, having the
orientation angle 6, , = 0°, while the inner laminae groups
contain fibers with an orientation angle 6, = 45° and 0, = -
45° respectively.

Fig.1. Layered fiber reinforced composite
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The composite cantilever beamn has also the length L =
1000 mm, width B = 50 mm, each group of laminae having
the height h = 1.25 mm. For a better comparison, but
without significantly affecting the results, the outer lamine
groups maintain the mechanical characteristics of the
steel, whereas the inner laminae groups due symmetry
have the same physical and mechanical characteristics,
namely: density 960 kg/m?, Young’s modulus £ = 1100 N/
m?’, tensile strength o, = 33 MPa. This model also fit well
the case of sandwich panels with steel layers framing a
foam layer.

The analytic study starts with the well-known equations
of motion for a cantilever beam, using the so-called share
model, where bending and share are considered:

4 4 2
6w(ic,t)_p6w(2x;t)+ Ow(;c,t)zo
ox kG ox‘t ot
4 4 2 M
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Here w is the transverse displacement of the beam, o
is the angle of rotation due to bending, x the distance from
the fixed end, ¢ the time, G the shear modulus and % a
shape factor depending on the cross-section’s shape. For
a rectangle
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Neglecting share the Euler-Bernoulli model results,
whose equation of motion for a cantilever beam is given
by relation:
'w pA O*w _
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Damping has insignificant influence upon natural
frequencies in both cases and therefore it is neglected.

The values of natural frequencies for the share model
are obtained by solving equation (1). For i vibration modes
one obtain:

_Ja, b, kE
fsm =—0> 201+ p)pL’ @

wherea andb_ result from the characteristic equation (5)
of the shear cantilever beam

(b2 —az)absinasinhb-i»(b4 +a4)cosac0shb+2azb2 =0

and a and b are in following relation

b=a - 6
72i2a2+1 ()

With y* we denoted ./2(1+ u)/ k and i is the radius of
gyration Vi =1/A
Now it is possible to write the mode shape as:
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and the rotation due bending as:
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a, sina, +b, sinhb,

where we denoted ¢2 =
b,% cosa, +a* cosh b,

For the Euler-Bernoulli model the values of natural
frequencies are obtained by solving equation (3); for n
vibration modes one obtains:

A [E 9
E—-Bn 2” /)4L4 ()

where _result from the characteristic equation (8) of the
Euler-Bermoulli cantilever beam

1+cosA-coshA=0 (10)

Itis obvious that for a given beam, with constant rigidity
El, the ratio between natural frequencies f, and f  are given
by the constants a, and b_or A respectively. Comparing
these ratios with those of the values obtained on the real
beam we can define its dynamic behavior. Table 3 presents
the ratios for the Euler-Bernoulli model, shear model and
that resulted by FEM analysis, where the first natural
frequencies for the analytic cases were normalized to fit
that of the FEM analysis; however, differences are less than
1.5%.

Dividing the ratios obtained using the FEM to those of
the Euler-Bernoulli model and Share model respectively
we can find out the manner how the real beam behaves.
Figure 2 presents these results in a graphical way,
suggesting the similar behavior of the beam to that of the
Share model.

The facts presented above lead us to the conclusion
that the damage detection method developed by the
authors for the isotropic case [12] is less appropriate for
composite beams, as long as it base on mode shape
curvature due bending alone. Differences between the
behavior for the two cases are illustrated in figures 3 and 4,
by plots of the mode shape and natural frequency changes
respectively, where the continuous line is assigned to the

Share model, while the dashed line represents the Euler-
Bernoulli model.

One can observe that the inflection points and extrema
points in figure 3 are lightly translated to the fixed end, so
new patterns have to be designed; the effect is even higher
as shorter the beam and higher the frequency mode. Similar
conclusions can be found in [13]. For this reason, we
propose to substitute the mode shape curvature in the
Gillich-Praisach relation for the Euler-Bernoulli case,
presented in [12], with the normalized potential energy,
resulting a general available relation for all beam types
and geometries. The relation, revealing frequency changes
Af (x) atany location x along the beam and for any damage
depth 9, as difference between the frequency of the
undamaged beam f  and that of the damaged beam
f ,(x), becomes in this case:

Mo(x)=fo v~ fop(x)=
H ( PR

=fov-CaCcs—" 7 U(x) (1)

L 6

]5 w-L*
Cp

The right expression of equation (11) contains
information extracted from the undamaged beam,
excepting the damage location x and depth 6. It has to be
mentioned that this equation is valid for all vibration modes
and support types as it is, for any beam model, without
other alterations being necessary.

Equation (11) reveals the influence of each factor on
frequency changes. Temperature influence is considered
by ¢, coefficient; for ambient temperature 22° this takes
the unit value. The influence of beam geometrical
dimensions is provided by the height H and length L,
weighted by shape coefficient ¢ . The influence of the cross-
section reduction is represented by the bracket term; as
expected, the enlargement of damage depth & amplifies
the frequency shift. The boundary conditions (beam support
type) are represented in the relation by the sum of areas of

Fig.2. Comparison between the behavior of the composite beam

and the Euler-Bernoulli and Share beam respectively

188

Mode | Analytic E-B | Freq. ratio | Analytic shear | Freq. ratio FEM Freq ratio
n [Hz] E-B [Hz] Shear [Hz] FEM
1 5.148 - 5.148 - 5.148 -
2 32.260 6.267 31.74806 6.167 31.574 6.134 Table 3
3 90.329 2.800 87.37779 2.752 86.929 2.753
4 177.009 1.960 167.2678 1.914 166.430 1.915 NAgg ?ﬁ; E%i?#gg%m
5 292.609 1.653 269.0946 1.608 267.396 1.607 CANTILEVER BEAM AND
6 437.107 1.494 389.8079 1.448 386.579 1.446 THE FREQUENCY RATIOS
7 610.505 1.397 526.1991 1.349 520.847 1.347
8 812.803 1.331 675.0105 1.282 667.366 1.281
9 1044.000 1.284 833.4776 1.234 823.700 1.234
10 1304.096 1.249 999.6379 1.199 987.842 1.199
g
5
=
Eg
M1 M2 M3 M4 M5 M6 M7 M8 M3 M10 0 Beam length x/Z 1
—o— Numerical vs. E-B —A— numerical vs. SH

Fig.3. Typical mode shape for a beam modeled using the Shear
model — and Euler-Bernoulli model - - - respectively
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Frequency

0 Beam length x/L 1

Fig.4. Natural frequency changes due damage for a beam modeled
using the Shear model — and Euler-Bernoulli model - - -
respectively

bending moments acting on the beam, calculated for
normalized weight W and length L, welghted with ¢,
coefficient placed before the third fraction. For the
cantilever beam ¢, = 1 as well as for the simple supported
and the double cfamped one. For the beam clamped at
one end and pinned at the other it is 0.875.

Damage location influence is introduced by the
normalized potential energy at the location x along the
beam, being determined using relation:

[#'(x)] +kGAW'(x)-¥(x)}

U(x)=
) max][arf'(x ) +KkGAW'(x) =¥ (x )]2' (12)

Obvious, at the location x for which _Un(x) = 1, highest
frequency shift is achieved for the corresponding vibration
mode. In this case, a global coefficient ¢ can be defined
as:

3

P o

c:c,,,-csﬂ-(L zcbW L (13)
L \H-¢6 6

which is constant for a given beam with certain damage,
irrespective to vibration mode number n. The normalized
potential energy is the only factor controlling the influence
of damage location; in the meantime the ¢ coefficient from
equation (11) indicates the influence of damage depth. In
literature, for isotropic materials, the relation between
damage depth and frequency change is considered quasi-
exponential, [14, 15]. For layered beams, this relation is
perturbed by the differences of mechanical properties
between laminae or groups of laminae. Simulations made
by means of the FEM for the two specimens described in
the beginning of the section, for the undamaged case and
32 damaged cases (eight levels of depth and four locations
of damage considered one by one) for each beam,
permitted the calculus of the relative frequency shifts
Af *(x) for ten vibration modes one, as the frequency shift
Af (x) normalized by the frequency of the undamaged
beam f ., for a given mode n.

To illustrate the differences between the behavior of
damaged steel and composite beams respectively, we
consider a transversal open damaged for both beams,
having a width of 2 mm and a depth & varying between 8
and 67%, placed at distance x from the clamped end, like
it is presented in figure 5.

Results of simulations made using the FEM, presented
in figure 6 for the vibration mode one, reveal that for the
steel beam the relative frequency shift increase
exponentially with damage depth (as expected), while for
the composite beam the increase of the relative frequency

MATERIALE PLASTICE ¢ 49 No.3 & 2012

Fig.5. Damage induced in the composite beam, for a depth of 67%

steel beam —e—x/[=0.] — ~o= ~x/[=0.2 = & - =x/L=03 = e—- xL=04
composite —p— /=01 — p— ~vE=02 — -~ --x/L=03 —-A—- x/L=04
40

35

30

25

20

relative frequency shift [%]

] 8 17 25 33 42 50 58 67
damage depth [%]

Fig.6. Relative frequency shift for the steel and the composite
beam, for various locations and levels of depth

shift present a step when its depth is nearby the height of
the outer laminae.

It is obvious that for a composite made by a larger
number of layers, the evolution of the relative frequency
shift is stepwise; the higher the number of different layers,
the smaller the step. On the other hand, significant
differences between the layer characteristics (especially
density) lead to significant values of the relative frequency
shift. One also observe that the relative frequency shift
take higher values for the composite beam, even for
reduces values of damage; consequently, damage
detection is more facile for composite beams. However,
this effect is also amplified by significant density differences
between the layers.

Experimental results and validation of the method

To prove the method availability a series of experimental
tests where performed on a composite beam. The chosen
beam support type was fixed-free, realized mounting it in
a rigid support. The measurement system used for the
vibration signal acquisition, presented in figure 6, is
composed by a Toshiba laptop, a NI cDAQ-9181 single slot
chassis with Ethernet connection, a NI 9234 four-channel
dynamic signal acquisition module and a Kistler
8772A10M10 piezoelectric accelerometer. This system
permits transmission of data to larger distances, useful
when monitored structures are distributed on a larger field.
As programming environment LabVIEW was used to
develop the virtual instrument which acquire the time
history of acceleration and realize the spectral analysis. It
has to be mentioned that this virtual instrument is designed
to find the natural frequencies with high accuracy, though
early damage detection implies observation of small
frequency changes.

To find out the weak-axes bending natural frequencies
for the first ten vibration modes we measured the
accelerations on transversal direction. The accelerometer
was placed near the free end of the beam, figure 7, in a
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] Fig.7. Experimental stand

normalized frequency shift

[ih] M2 M3 M4 M5 M6 M7 M8 Mo M10
vibration mode

Natural frequency f, Relative frequency shift Af,
Mode | Undamaged Damaged Percentage | Normalized

[Hz] [Hz] [%] ] Table 4
L 2.14 4.52 12.06226 ! MEASURED NATURAL FREQUENCIES AND
3 87.13 78.21 10.23758 0.848728 ANALYZED BEAM
4 166.15 161.82 2.606079 0.216052
5 267.87 263.74 1.541793 0.12782
6 387.71 359.45 7.288953 0.604278
7 52243 506.94 2.964991 0.245807
8 669.57 668.79 0.116493 0.009658
9 826.93 789.04 4.582008 0.379863
10 991.38 959.85 3.180415 0.263667

| ® analitic solution " measurement |

Fig.8. Pattern recognition for a induced damage
at 300 mm from the fixed end

location assuring reasonable displacement, determined
from the mode shapes. A transversal force was applied on
the beam to bring the mechanical system out of its
equilibrium position; suppressing that force, the beam
started to vibrate. We recorded the acceleration values for
the undamaged beam and stored them on the laptop;
afterwards we determined the natural frequencies for the
first ten bending vibration modes. The process was
repeated until trustful frequency values were obtained. The
results can be improved by replacing the accelerometer
on certain points, where the maximum displacement for
the corresponding mode is obtained. Afterwards, a damage
on the beam was produced by a saw cut at around 300
mm from the fixed end with a certain depth (which will be
determined subsequently) and new series of measurement
realized. The obtained results are presented in table 4, both

190 http://www.revmaterialeplastice.ro

for undamaged and damaged case. It is obvious that for

the damaged beam some frequencies present changes

comparative to the undamaged case, while other

frequencies maintain their values. This make possible to

precisely identify the location of damage and afterwards

i[ts s]everity by using an algorithm developed by the authors
12].

Using the measured natural frequency values of the
weak-axes bending vibrations for the undamaged and
damaged case, one can calculate the relative frequency
shift Af *(x) in percents and normalized with the highest
value of the series. The results are also presented in table
4. 1t is evident that whereas the relative frequency shift
expressed in percents provide information about the
location and depth of damage, the results expressed in
dimensionless units provide information about the damage
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location exclusively. For a precise location it is
recommendable to compare first these last values with
those obtained analytically for numerous damage
locations; similarity between the series determined by
measurements and patterns determined analytically
define the damage location [12]. Figure 8 presents the
patterns for a damage at 300 mm from the fixed end (left
columns) and the series of values determined using the
measured frequencies (right columns); one can observe
the good fit between them. Therefore, damage location is
reduced to a pattern recognition problem.

Knowing the location of the damage, respectively the
value x/L = 0.3, we can evaluate the damage severity by
finding the place on the corresponding curve in figure 5 on
which the relative frequency shift takes the value 12%.
Thus we estimate a cross-section reduction due damage
of almost 25%. Dimensional measurement confirms a
damage depth a little higher than 1 mm, representing a
cross-section reduction of 20-22%.

Conclusion

Researches performed by the authors, presented in this
paper, have find out that composite beams follow a
dynamic behavior best described by the share model. This
imposes, for accurate damage detection and location, the
use of new patterns based on the generalized relation given
in equation (11). However, like by isotropic materials, on
inflection points of the mode shape curvature no frequency
changes occur, while on extreme points highest changes
appear.

Damage depth lead to a stepwise evolution of frequency
changes; the number of steps and their height are defined
by the number of layers. The relative frequency shift
depends especially on the difference between layers
properties, bigger differences leading to bigger shifts in
frequency. This makes damage detection and location in
composite beams more facile comparative to steel beams,
but estimation of damage severity more difficult.

As future work, the authors intend to extend their
researches on plates and shells.
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