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Viscous Flow  and Heat Transfer Over a Permeable
Shrinking Sheet with Partial Slip
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The viscous flow over a shrinking permeable sheet with partial slip is investigated. The flow is governed by
a third-order nonlinear differential equation and heat transfer by a second-order differential equation. The
equations of motion are solved analitically by Optimal Homotopy Perturbation Method (OHPM). This
procedure is highly efficient and it controls the convergence of the approximate solutions. A few examples
are presented, showing the exceptionally good agreement between the analytical and numerical solutions.
OHPM is very efficient in practice, ensuring a very rapid convergence after only one iteration.
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The flow to a shrinking boundary with partial slip has
yet become relevant in many situations and is very
significant because of its several applications in engineering
or industrial processes for example: glass fiber, crystal
growing, paper production, drawing of electric films. Also,
there are some situations where there may be a partial slip
between the fluid and the boundary, e.g., the fluid may be
a rarefied gas as mentioned by Sharipov and Selernev [1].
The no slip condition is replaced by Navier’s partial slip
condition, where the amount of relative slip is proportional
to the local shear stress. The effect of stagnation slip flow
on the heat transfer from a moving plate was recently
considered by Wang [2]. Fang et al. [3] have solved the
problem of viscous fluid flow model, without considering
the heat transfer aspects, and they presented an exact
solution of the governing Navier-Stokes equations. A very
specific unsteady shrinking film solution was discussed
by Wang [4]. The properties of the flow due to a shrinking
sheet with suction are studied by Miklavèiè and Wang [5].
Suction occurs when the fluid condenses on the surface,
such as in chemical vapour deposition is considered by
Jensen et al. [6]. The boundary layer flow and heat transfer
over a permeable shrinking sheet with a first order slip
flow model and the heat transfer rate at the surface are
investigated by Aman and Ishak [7].

The objective of the present paper is to propose an
accurate approach to nonlinear differential equation of a
viscous fluid over a shrinking permeable sheet with partial
slip and the heat transfer at the surface, using an analytical
technique, namely optimal homotopy perturbation method
[8-11]. The validity of our procedure, which does not imply
the presence of a small or large parameter in the equation
or into the boundary / initial conditions is based on the
construction and determination of the auxiliary functions,
combined with a convenient way to optimally control the
convergece of the solution. The efficiency of our procedure
is proved while an accurate solution is explicitly analytically
obtained in an iterative way after only one iteration. The
validity of this method is determined by comparing the
results obtained with the results given by the numerical
integration.
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Equation of motion
 Consider a two-dimensional laminar boundary layer

flow over a shrinking boundary. If (u, v) is the velocity
components in the Cartesian directions  (x, y)  and T  is the
temperature in the boundary layer, then the boundary layer
equations are

where ν is the kinematic viscosity and α is the thermal
diffusivity.

The partial slip boundary conditions are:

      (4)

where a>0 is the shrinking constant, k is a constant of
proportionality, Vw is the mass transfer velocity at the
surface of the sheet with Vw>0 for injection, Vw<0 for
suction and Vw=0  for impermeable sheet, Tw  is constant
surface temperature.

In order to simplify the governing equations we use the
similarity transformations:

     (5)

where η is the independent similarity variable, F(η) is the
dimensionless stream function, θ(η) is the dimensionless
temperature and ψ is the stream function defined as u =
ψy and ν = −ψy  such that eq. (1) is automatically satisfied.
From eq. (5) we get

                   (6)

where prime denotes differention with respect to η.

(1)

(2)

(3)
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If we note  s = F(0), then we take

             (7)

Eqs (2) and (3) are reduced to the ordinary differential
equations:

                       

where  Pr = ν / α is the Prandtl number.
Now, the boundary conditions (4) can be written in the

form

   

where λ = k √aν  is a nondimensional parameter indicating
the relative importance of partial slip. If  λ = 0 there is no
slip and if λ→ ∞, the surface is stress free [7].

Basic ideas of optimal homotopy perturbation method
We consider the following nonlinear differential equation

    (12)

subject to the initial / boundary conditions

    (13)

where  L is a linear operator,  N is a nonlinear operator and
B  is a boundary operator.

Generally speaking, the nonlinear operator  N(u)
depends on η, u , u’,  u’’ and  u’’’ and therefore one can
write:

    (14)

Applying the Taylor series theorem for real values α, β ,
γ,  δ, we obtain

(15)

We consider a homotopy, introducing a number of
unknown auxiliary functions Kij(η,Ck), i, j, k = 1,2...  that
depend on the variable η and some parameters C1, C2, …
which satisfies the following equation [8]:

    (16)
 where  p ∈[0, 1] is an embedding parameter, uo is an
initial guess of the solution u(η, Ck) which satisfies the
boundary conditions:

    (17)

So, it is quite right to assume that the solutions of eq.
(16) can be expressed as

    (18)

The first-order approximate solutions of  eq. (12) can be
readily obtained

    (19)

where u1(η, Ck) is obtained by equating the coefficient of p
for eq. (16). More precisely we have the following equation
for u1:

In our procedure we can write only two equations: (17)
and (20). The auxiliary functions Kli,  i = 1,2,...,5 are not
unique and they can be chosen so that the products KliGa
and Ga to be of the same form (a=u, u’, u’’ or u’’’). The
convergence-control parameters Ck, k = 1,2,..., which
appear in the expression of the functions  Kli(η, Ck) can be
optimally determined. This can be done via various methods
such as: the least squares method, the weighted residual,
the collocation method, the Galerkin method and so on.
The solutions of eqs. (12) and (13) can immediately be
determined once the convergence-control  Ck are known.

Application of OHPM to viscous flow and heat transfer
given by eqs. (8-11)

 We apply our procedure to obtain approximate solutions
of eqs. (12) and (13). We choose the linear operator  L by
the form

    (21)

where  K > 0 is an unknown parameter.
Equation (17) becomes

    (22)

which has the following solution

                    (23)

The nonlinear operator is given from eqs (12), (8) and
(21):

  (24)

From eq. (24) we obtain

                   (25)

Substituting eq. (23) into eqs (24) and (25) we have

 (26)

Equation (20) can be written in the form

 (8)

 (9)

 (10)

 (11)

 (20)
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Having in view eq. (27), the auxiliary functions Kli(η , Ck), i = 1,2,3,4,  must follow the terms in this equation, such that
we can choose the functions Kli(η , Ck) in the following form:

                                                                 (28)

where Cj, j = 1,2,...,6,  are unknown parameters at this moment.
Substituting eq. (28) into eq (27), we obtain equation in Fl(h)

                                    (29)

where A = λsK2 - λK3 + sK - K2 - 1
Now, solving eq. (29) and then substituting this result and eq. (23) into eq. (19), we obtain the approximate solution of

the first-order in the form:

                             (30)

where

       

For eqs. (9) and (11), the linear operator and nonlinear
operator are respectively:

    (33)

where h  is an unknown parameter.
In this case, eq. (17) becomes

      (34)

and has the solution
(  (35)

Substituting eq. (35) into nonlinear operator G(θ) and
Gθ(θ), we obtain

       (36)

                 (27)

(31)

  (32)

where

             (37)

Choosing the auxiliary functions Kzi;(η, Dk)  in the form

       (38)

where Dj, j = 1,2,3,4 are unknown parameters, equation
from which we can obtain the first-approximation θ1 is
given by

(39)
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The first-order approximate solution of eqs (9) and (11) can be obtain from the solution of eq. (39) and from eq. (35)
and has the form

Numerical examples
We illustrate the accuracy of OHPM by comparing obtained approximate solutions with the numerical integration

results obtained by means of a fourth-order Runge-Kutta method in combination with the shooting method. The unknown
parameters are optimally identified via the least square method.

Example 5.1 In the first case, we consider  s = 3, λ= 1, Pr = 0.71  and therefore eqs (32) and (40) respectively, can be
whritten effectively in the form

(41)

(42)

Example 5.2 In the last case, for  s = 2, λ= 3, Pr = 11

(43)

(44)

(40)
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In figures 1 and 2 are plotted a comparison between
the first-order approximate solutions and numerical results
obtained by means of the fourth-order Runge-Kutta method
in combination with the shooting method.

Conclusions
 In this work, the Optimal Homotopy Perturbation

Method (OHPM) is employed to propose an analytic
approximate solution to the viscous flow and heat transfer
over a permeable shrinking sheet with partial slip
parameter. Our procedure is valid even if the nonlinear
equation of the motion does not contain any small or large
parameters. The proposed approach is mainly based on a
new construction of the solutions and especially on the
involvement of the convergence-control parameters via
the auxiliary functions. These parameters lead to an
excellent agreement of the solutions with numerical
results. This technique is very effective, explicit and
accurate for nonlinear approximations rapidly converging
to the exact solutions after only one iteration. The boundary
layer equations governing the flow reduced to ordinary
differential equations using a similarity transformation.
These equations are solved to obtain the displacement and
temperature distributions for various values of the partial
slip parameter, mass suction parameter and Prandtl
number. The effect of partial slip parameter and mass
suction parameter, strongly influence the flow
displacement and the temperature distribution in the
boundary layer.
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