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The secondary rheodynamic quantities in case of stress (o)-controlled retardation processes, including the
the storage, loss and absolute moduli, as well as the corresponding loss factor, are considered from the
viewpoint of frequency dependence, exact relationships providing the- o - characteristic frequencies
corresponding to maximum and inflection points being given for the (1,1) - standard linear viscoelastic
model. The results are illustrated in natural, semi-logarithmic, logarithmic and double-logarithmic coordinate

representations.
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Appropriate assessment of rheological behaviour of
polymer materials in the framework of linear viscoelasticity
strongly recommends the use of dynamic characterization
[1-9]. Accordingly, the two distinct lines involving the
strain(€)- and stress(o)-controlled processes, respectively,
providing in a straight manner primary and secondary
rheodynamic quantities, are to be considered together with
the modulus-compliance interrelationships. Finally, the
comprehensive (primary-secondary) description being
accomplished in the &-controlled case [1,3], that of ©-
controlled one [2] is considered for the secondary
counterpart for different typical coordinate representations
used in the circumstances of standard linear viscoelastic
model.

General definitions

Inthe general case of solid linear viscoelastic behaviour,
the rheological equation for the (m,n)- rheological state
can be expressed in terms of P, Q differential operators as

O = Fm@ (11.1)

where
O =% *+a D +q,Dt(2’ +..+ ng‘m (1.2.1)
Poy=Po+ 2D+ 2,02 +..4p, D™ (112.2)

and &, o denote the natural rheological variables,
Qo1 %1+ 9z -0 5 Pos Pys Pysees Py are the nominal
rheological parameters, wh|Ie D O =d"/ dt" represents the
r-th order time derivative operator and m<n.

As previously established [2], in the case of a sinusoidal
stress-controlled process of given amplitude, o, and
circular frequency, w,

F=o,expiwt) (1.3)
the corresponding steady-state strain is of the form

* email: htopaven@netscape.net

138

& = s(@)expli[@1 - 5, (2)]} (11.4)

and, by definition

g/a = [80 (a))/o.olm,u){cos[‘s(u,n) (w)] - sm[a(u,n) (w)] } (l l 5)

is the complex compliance

iy (@) = J 0y (@) =1y (@) (116)

whereas in the case of a sinusoio!al strain-controlled
process of given amplitude, €, and circular frequency, w,

[1]

i) 01
s§=syexpliot) .7
the corresponding steady-state stress is of the form

& =[og(@)]y.,, explil@ t + 5, ) (@)]} (1.8)
and, by definition

G158 =[0,(@)/ 8, ) {c08[8 ., (@)] +i5in[S,,,, ()]} (119)

denotes the complex modulus

(M,(w) My (@) +IM, (@) (11.10)

In the case of o- controlled dynamic process when the
complex compliance, J*(m " results in a direct manner,
along with that of the €-controlled one, when the
corresponding complex modulus, M=, ,,is provided, the
key relationship occurs

iy (M 5 (@) =1 (11.11)

In case of o-controlled processes, the complex
compliance, J* (w) is given by direct primary
rheodynamic quantl{les the (m,n)-storage compliance,
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J (w), and the (m,n)-loss compliance, J” ., (w), or
by using the derived primary rheodynamic quantities - the
(m,n)-absolute compliance, |J*(m o ()], and the (m,n)-
loss factor, 3, " (w)- whereas the'corresponding complex
modulus, M*j(m o (@), results in terms of secondary
rheodynamic quantities - the storage modulus M’ Ay (w),
and the loss modulus, M”, = (w), definedas

My (@)= M} (@) 1M () (1112)

which can be calculated by using the relationships

M;(m)(a’) = J;l(n‘n)(w)” J;«(n.n) lz

M;(n,n) (w) = J:‘(u.n)(w)/‘ J;{(n,n) |2
as well as those for the absolute modulus, |M*J(m o (W],
given as '

(I1.13)
(11.14)

'M;(m) l: [M;(u,njz(m)+M;(u,n)2(m)]”2 (”15)

and the corresponding loss factor, BMJ(mm (w) assigned by

Bu,.., ()=tans, (@)=M Tomny () MG (@) =
= J;‘(N-l) (w) /J:l(*'-l) (CD) = tan 6’-1-.-) ((D) = pJn(.,-: (m)
(1.16)

o - (1, 1) rheological state frequency effects

For the model of standard linear viscoelastic solid which
states the situation when m=n=1, i. e., the mono-relaxant/
mono-retardant case, the arising rheological equation of
the (1,1)-rheological state is, [2],

qo6+4, D6 = pyo+p Do (11.17)

The use of definition relationships,(11.10, 11.11), /2/, and
(11.13-11.16) provides the set of secondary o-controlled
rheodynamic quantities - My, ., M7, W;M)(“’)‘ and
By, (@) on the basis of primary ones.
interms of nominal rheological parameters results

My (@) = (2ogo + PG YDy + 1) (1118.1)
My, @)= (pog; —p1g0 )/(p,’ + p' @) (118.2)
M op @) =10 +4, 2" ) p," + p )17 (1181)

Bu,,, (@)= (Pod, = PG )0 (Do + P1g 1) (1118.2)
and if the characteristic rheological parameters

Co=p,/9,C =0, /9,D=q /g, (11.19)

are used, one gets

My (@)= (Cy + C, D@ C,* +C ') (11.20.1)
M}y, (@)= (C,D, - C)i(Cy? + C* ) (11.20.2)
IM;N)(w)I =[@+ D’@*)NC,? + C o))" (11.20.3)
Bu,,,, (@)= (CoD; ~ C)wHCy + C, Dy’ (11.20.4)

Given the limit values for storage modulus are
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oMy (@) =M =1/C, =1/J; (11.22.1)

= M (@)= MY =Dy /C, =1/, (1222)

and D, (=t ) is defined as a time dimension quantity,
traditionally termed as the “retardation time”, even ifitis
visible that the D, = 1/ooT definition, where W, is a
characteristic frequency seems to be more suitable,
functional relationships arise.

Accordingly,

Mg (@)= (g +J0r, 20" W3R +720 2?)  (122.1)
Moy @) =5 Iy, 05 +70, 0" (1222)
b7 an @) =[Q+ 2,20 IS +I00 201 (1223)
Put,, (@)= (g — I Q)T 05 +J 1, ) (11.22.4)

Furthermore, given the basic frequency significance of
1/t

My (@) =(Js +J50° 1, YIS+ 0 fo®)  (1123.0)
My (@) =[(Js - I/ @, 1/ + I e’ f@,%)  (1123.2)
My @) = [0+ @0/ 0,7 ) +I220% f, 2 (1.233)
By, (@)=l - I )/ o, JWJ§ + 7.0 | @,%) (11.23.4)

w_being the frequency at which the loss compliance
presents a maximum value, and can be defined as the
natural frequency of the o controlled dynamic retardation
process. Finally,

Moy (@)= (g +JLw, ) + I w, ) (1124.1)
My, (@,) =) -JO@INE + I ) (1124.2)
WMo @) =10+ @, Y3 +J 52, )} (11.24.3)
a0, @) =[5 - I )m, WIg +J o, %) (11.24.4)

where @, = w/ w, represents the corresponding relative
(normalized) frequency.

0 - (1, 1) characteristic frequencies

In order to identify the main consequences of the
obtained set of secondary rheo-dynamic quantities in case
of o-controlled processes, the corresponding first-,D , and
second-order, D @, frequency derivative are calculated, the
solution of resﬁhing equations providing the necessary
conditions of maximum and inflection, respectively.

For the storage modulus, it follows

DM, (@) = 2C,C,(C, D, - C ) Cy? + C2? )Y(11.25.1)
D, P My, (@) = 2C,C,(C, D, - C)C,? —3C, @ (G2 +C %)’

(11.25.2)
the inflection frequency yielding as

Bae,y = 50N, O My (@)= 0= (VB/3UC, /C), =

(B, = (BINSIm, O

In case of the loss modulus one obtains
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MCy® +Ca )
(11.27.1)

Yo/(C2 +Cla’)
(11.27.2)

DMy, @)= (CyD, - CXC,’ - G2’

DM}, (@) =2C*(C,D, -C,)(-3C; +C o’

the corresponding maximum frequency being

DBpagsy,) = SO DM (@) = 0]=C,/C, =(Jg/J /T, )=
= (s IV o), (11.28.1)
whereas the inflection one is
Qqags, = SO D M (@)= 0] = VB(C, /c:)=( -
11.29.1

=BT e, )= B 1L,

For the absolute modulus one gets

D-IM;OJ)(‘”)Iz (anDxa—Cll)m/[(an + Clzmz)an(“_ Dlamz)m]

(11.30.1)
Dwm l-M;(u) (‘”ﬂ= (002 sz - Clz )(Coz - zcxz‘”2 - 3C12 szw4)/
MC, +C 2?2 (1+ D o)) (11.30.2)

resulting for inflection

A, = {501 *[D, M, = 0] s0l*[3C,* D 0" + 2C 0 - C,* = 0]} =

=3¢, DG (BC DI +C -C)) =

=(3/3)1/ D, )‘[leusc,,2 KC2/D%)-1=

= (B Ao Y1+ VE 12 -1

In the case of the corresponding loss factor

(11.31.1)

-C, D, 2/C C, 2
Dol @)= OB =CXC =GRy +CRY

D, By, (@)= 20, Dy(CoD; — CX(-3C, + C, Dy YwlCq + C, Dy’ )’
(11.32.2)
the maximum condition gives

Dot By sy} = sol[D,p,,m’ (@)=0]= \/Co 1GDy = JJé Wel/z,)=

=W/,

while for the inflection one results

(11.33.1)

Bt B0} =50l[DyPu,,, (@) =0]= Jco /1CD = \fJé We@/z,)=

=i1e, (11.332)

As result of the explicit sequence of values

W 1IL < 35100 < (NBI3WJ§ 1UL) < T3 175 < BW§1IL)

(11.34.1)

and in virtue of the fact that for polymeric materials J’;
>10J’_, the resulting physical consequence
B,y < Brgpy ) (Aipy,) (Ao  Buiaery (Baryy (11.34.2)
expresses the existence, in the case of o - controlled
processes, for different secondary rheo dynamic quantities
of a full set of o - characteristic frequencies. The
relationships for the frequencies corresponding to the

complete set of primary and secondary viscoelastic
guantities are given in table 1.
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Table 1
CHARACTERISTIC FREQUENCIES CORRESPONDING TO PRIMARY
AND SECONDARY RHEODYNAMIC QUANTITIES FOR
0 - CONTROLLED PROCESSES

Viscoelastic | Frequency Value
Quantity
! Ay 3 /3,

J” Dnisy @
J* Bisrey V3o,
7 An | (BOW I e, 31 TE -1
B/ Duify) Vs lte,
B/ a) BRI, @,
M; Q) 313303 1),
M7 Doqaes) (ol JL)e,
M3 Qs \/_(Jo 175)e
M, Qo 3/, 143752 172 -1
By, Duia ) it Tom,
By, Uip,) BIGI L @,

Taking into account the results obtained for €- and o-
controlled primary rheodynamic quantities, [1, 2], the two
basic relationships,

@ = (s 1), (11.35)

oo, = 0)"2 (11.36)
among many others, are pointed out, where w,_represents
the natural frequency of the &- controlled rheodynamlc
process, to which corresponds the maximum of loss
modulus, and w_, is the o€ - characteristic mixed frequency
corresponding to the maximum value of loss factor, each
quantity providing a distinct criterion for appropriate
assessing of the material behaviour potential.

Simulation of secondary (1, 1) - rheodynamic effects

In order to point out the peculiarities of frequency
dependence in the case of different secondary o-
controlled rheodynamic processes, physically realistic
values of J' , J’_, w_ are considered, e.g.,

Ji =N1/MPa},J:, = 10°[1/ MPa), e, =1,2,5[rad /5]

The obtained results are given in figure II.1 for the
storage modulus (M1J), in figure 11.2 - for the loss modulus
(M2)), as well as in figure 1.3 for the absolute modulus
(MJ), and in figure 1.4 - for the corresponding loss factor
(BMJ), taking into account different standard coordinate
representations - natural(a), semi-logarithmic(b),
logarithmic(c) and double-logarithmic(d).

The calculated values of characteristic frequencies for
given a-controlled dynamic processes are given in table 2.

The dissimilar features of frequency dependence of
different o - controlled secondary rheodynamic quantities
in case of (1, 1) - rheological behavior, draw attention, on
the hand, for the storage modulus (fig. I.1), on the increase
with increasing frequency, fromthe low value, M’ , at zero
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b)sl-M1J

Fig. Il.1 Storage modulus, M1J,
versus frequency, w, for different
dynamic retardation processes -
o= 1(0), 2(+), 5(0) [rad/s] -
in natural(a), semi-logarithmic(b),
logarithmic(c) and double-
logarithmic(d) coordinate
representations
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Fig. 1.2 Loss modulus, M2J, versus
frequency,w, for different dynamic
retardation processes - w_ = 1(0),
2(+), 5(0) [rad/s] - in natural(a),
semi-logarithmic(b), logarithmic(c)
and double-logarithmic(d)
coordinate representations
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Table 2
CALCULATED VALUES OF CHARACTERISTIC FREQUENCIES OF PRIMARY AND SECONDARY
RHEODYNAMIC QUANTITIES IN CASE OF o-CONTROLLED PROCESSES FOR GIVEN
VALUES OF RETARDATION FREQUENCIES (W, =1, 2, 5 RAD/S)

Viscoelastic Characteristic frequencies
Quantity [rad/s)
Ji wi{J1} 057735 1.154701 2.886751
J2 wm{J2} 2 5

wi{J2Z} 1.732051 3464102 8.860255
J wi{l} 0.707107 14142 3.536
BJ wm{BJ} 31.62277 63.246 158.114
wi{B% 54.771226 109.545 273.861
M1J wi{M1J} 577.35 1154.701 2888.751

M2J wm{M2J} 1000 2000 5000
wi{M2.J} 1732.051 3464.102 8660.254
MJ wi{MJ} 24.02118 48.0423 120.105
BMJ wm{BMJ} 31.62277 83.248 158.114
h wi{BMJ} 54.77226 109.545 273.861

frequency, to the high limit value, M’_, at “infinite”
frequency; on the other hand, (fig. 11.2), the loss modulus
shows a maximum, peak value at intermediate frequency,
corresponding to natural € - frequency of dynamic
relaxation process, while zero value corresponds both to
zero and “infinite” frequency. For other secondary
rheodynamic quantities distinct trends are evidenced - the
absolute modulus, (fig. 11.3), shows a frequency
dependence similar to that of storage modulus, with
inflection at lower frequency than in case of storage
modulus, while the corresponding loss factor, (fig. 11.4),
shows a somewhat similitude with that of the loss modulus,
even if the maximum and inflection frequencies are at
lower values.

Conclusions

In the case of stress - controlled dynamic retardation
processes the set of o-characteristic frequencies defined
in terms of model rheological parameters is obtained,
providing complete information as regards the spectrum
of linear viscoelastic behaviour.

The secondary rheodynamic quantities - including in
case of a-controlled processes, on the hand, the storage
and loss moduli, as well as, on the other hand, the absolute
modulus and the corresponding loss factor, respectively -
result on the basis of compliance-like ones, specific
features being revealed by using the multiple criterioum
of characteristic maximum and/or inflection points.
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Given the essential justification of usefulness of the set
of characteristic frequencies in case of o - controlled
dynamic retardation processes, thoroughly attention is to
be considered jointly for consistent characterization and
appropriate evaluation of polymeric materials undergoing
dynamic stress-controlled conditions of testing.
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