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Exact Relationships in Phenomenological Analysis of Rheodynamic
Relaxation / Retardation Processes in Linear Viscoelasticity of

Polymer Systems
II.2. Secondary Characteristic Quantities in the Case of Stress - Controlled Processes
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The secondary rheodynamic quantities in case of stress (σ)-controlled retardation processes, including the
the storage, loss and absolute moduli, as well as the corresponding loss factor, are considered from the
viewpoint of frequency dependence, exact relationships providing the- σ - characteristic frequencies
corresponding to maximum and inflection points being given for the (1,1) - standard linear viscoelastic
model. The results are illustrated in natural, semi-logarithmic, logarithmic and double-logarithmic coordinate
representations.
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Appropriate assessment of rheological behaviour of
polymer materials in the framework of linear viscoelasticity
strongly recommends the use of dynamic characterization
[1-9]. Accordingly, the two distinct lines involving the
strain(ε)- and stress(σ)-controlled processes, respectively,
providing in a straight manner primary and secondary
rheodynamic quantities, are to be considered together with
the modulus-compliance interrelationships. Finally, the
comprehensive (primary-secondary) description being
accomplished in the ε-controlled case [1,3], that of  σ-
controlled one [2] is considered for the secondary
counterpart for different typical coordinate representations
used in the circumstances of standard linear viscoelastic
model.

General definitions
In the general case of solid linear viscoelastic behaviour,

the rheological equation for the (m,n)- rheological state
can be expressed in terms of P, Q differential operators as

(II.1)

where

and ε, σ  denote the natural rheological variables,
mn ppppqqqq ,...,,,;,...,, 210210  are the nominal

rheological parameters, while Dt
(r) = dr / dtr  represents the

r-th order time derivative operator, and  m ≤ n.
As previously established [2], in the case of a sinusoidal

stress-controlled process of given amplitude, σo, and
circular frequency,  ω,

(II.3)
the corresponding steady-state strain is of the form
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(II.4)

and, by definition

(II.5)

is the complex compliance

(II.6)

whereas in the case of a sinusoidal strain-controlled
process of given amplitude, ε0, and circular frequency,  ω,
[1],

(II.7)

the corresponding steady-state stress is of the form

    (II.8)
and, by definition

  (II.9)

denotes the complex modulus
(II.10)

In the case of  σ- controlled dynamic process when the
complex compliance, J*(m,n),, results in a direct manner,
along with that of the ε-controlled one, when the
corresponding complex modulus, M*(m,n), , is provided, the
key relationship occurs

(II.11)
In case of σ-controlled processes, the complex

compliance, J*(m,n), (ω) is given by direct primary
rheodynamic quantities - the (m,n)-storage compliance,

(II.2.2)

(II.2.1)
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J’(m,n), (ω), and the (m,n)-loss compliance, J”(m,n), (ω), or
by using the derived primary rheodynamic quantities - the
(m,n)-absolute compliance, |J*(m,n), (ω)|, and the (m,n)-
loss factor, β(J,m,n), (ω)- whereas the corresponding complex
modulus, M*J(m,n), (ω), results in terms of secondary
rheodynamic quantities - the storage modulus M’J(m,n), (ω),
and the loss modulus, M”J(m,n), (ω), defined as

                (II.12)

which can be calculated by using the relationships

as well as those for the absolute modulus, |M*J(m,n), (ω)|,
given as

          (II.15)

and the corresponding loss factor, βMJ(m,n) (ω)  assigned by

σ - (1, 1)  rheological state frequency effects
For the model of standard linear viscoelastic solid which

states the situation when  m=n=1, i. e., the mono-relaxant/
mono-retardant case, the arising rheological equation of
the (1,1)-rheological state is, [2],

 (II.17)

The use of definition relationships,(II.10, II.11), /2/, and
(II.13-II.16) provides the set of secondary σ-controlled
rheodynamic quantities -   and

 on the basis of primary ones.
In terms of nominal rheological parameters results

and if the characteristic rheological parameters

                           (II.19)

are used, one gets

Given the limit values for storage modulus are

and  D1(=τσ) is defined as a time dimension quantity,
traditionally termed as the “retardation time”,  even if it is
visible that the D1 = 1/ωτ definition, where ωτ  is a
characteristic frequency seems to be more suitable,
functional relationships arise.

Accordingly,

Furthermore, given the basic frequency significance of
1 / τσ,

ωσbeing the frequency at which the loss compliance
presents a maximum value, and can be defined as the
natural frequency of  the σ controlled dynamic retardation
process. Finally,

where ωσ = ω / ωσ  represents the corresponding relative
(normalized) frequency.

σ - (1, 1) characteristic frequencies
In order to identify the main consequences of the

obtained set of secondary rheo-dynamic quantities in case
of σ-controlled processes, the corresponding first- ,Dω, and
second-order, Dω

(2), frequency derivative are calculated, the
solution of resulting equations providing the necessary
conditions of maximum and inflection, respectively.

For the storage modulus, it follows

    

the inflection frequency yielding as

     (II.26.1)

In case of the loss modulus one obtains

   (II.13)

       (II.14)

(II.16)

(II.18.1)

(II.18.1)

(II.18.1)

(II.18.1)

(II.20.1)

(II.20.2)

(II.20.3)

(II.20.4)

(II.22.1)

(II.22.2)

(II.22.1)

(II.22.3)

(II.22.2)

(II.22.4)

(II.23.1)

(II.23.2)

(II.23.3)

(II.23.4)

(II.24.1)

(II.24.2)

(II.24.3)

(II.24.4)

(II.25.1)

(II.25.2)
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the corresponding maximum frequency being

whereas the inflection one is

       (II.29.1)

For the absolute modulus one gets

  

resulting for inflection

         

In the case of the corresponding loss factor

the maximum condition gives

                (II.33.1)
while for the inflection one results

      

As result of the explicit sequence of values

      
                (II.34.1)

and  in  virtue of  the fact  that for  polymeric  materials J’0
>10J’∞, the resulting physical consequence

              (II.34.2)

expresses the existence, in the case of σ - controlled
processes, for different secondary rheo dynamic quantities
of a full set of σ - characteristic frequencies. The
relationships for the frequencies corresponding to the
complete set of primary and secondary viscoelastic
quantities are given in table 1.

Taking into account the results obtained for ε- and σ-
controlled primary rheodynamic quantities, [1, 2], the two
basic relationships,

among many others, are pointed out, where ωε represents
the natural frequency of the ε- controlled rheodynamic
process, to which corresponds the maximum of loss
modulus, and ωσε is the σε - characteristic mixed frequency
corresponding to the maximum value of loss factor, each
quantity providing a distinct criterion for appropriate
assessing of  the material behaviour potential.

Simulation of secondary (1, 1) - rheodynamic effects
In order to point out the peculiarities of frequency

dependence in the case of different  secondary σ-
controlled rheodynamic processes, physically realistic
values of J’o, J’∞, ωσ  are considered, e.g.,

The obtained results are given in figure  II.1 for the
storage modulus (M1J), in figure II.2 – for the loss modulus
(M2J), as well as in figure II.3 for the absolute modulus
(MJ), and in figure  II.4 – for the corresponding loss factor
(BMJ), taking into account different standard coordinate
representations - natural(a), semi-logarithmic(b),
logarithmic(c) and double-logarithmic(d).

The calculated values of characteristic frequencies for
given σ-controlled dynamic processes are given in table 2.

The dissimilar features of frequency dependence of
different σ - controlled secondary  rheodynamic quantities
in case of (1, 1) - rheological behavior, draw attention, on
the hand, for the storage modulus (fig. II.1), on the increase
with increasing frequency,  from the low value, M’o, at zero

(II.27.1)

(II.27.2)

(II.28.1)

(II.30.1)

(II.30.2)

(II.31.1)

(II.32.2)

(II.32.1)

(II.33.2)

Table 1
CHARACTERISTIC FREQUENCIES CORRESPONDING TO PRIMARY

AND SECONDARY  RHEODYNAMIC QUANTITIES FOR
σ - CONTROLLED PROCESSES

(II.35)

(II.36)
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Fig. II.1  Storage modulus, M1J,
versus frequency, ω, for different
dynamic retardation processes -
ω ret = 1("), 2(+), 5(o) [rad/s] –

 in natural(a), semi-logarithmic(b),
logarithmic(c) and double-
logarithmic(d) coordinate

representations

Fig. II.2  Loss modulus, M2J, versus
frequency,ω, for different dynamic

retardation processes  - ωret =  1("),
2(+), 5(o) [rad/s] - in natural(a),

semi-logarithmic(b),  logarithmic(c)
and double-logarithmic(d)
coordinate representations
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Fig. II.3  Absolute modulus, MJ, versus
frequency, ω, for different dynamic

retardation processes - ωret = 1("), 2(+),
5(o) [rad/s] - in natural(a), semi-

logarithmic(b), logarithmic(c) and  double-
logarithmic(d) coordinate representations

Fig. II.4  Loss factor, BMJ, versus
frequency, ω, for different dynamic

retardation processes, -
ωet = 1("), 2(+), 5(o) [rad/s] - in
natural(a), semi-logarithmic(b),

logarithmic(c) and double-
logarithmic(d) coordinate

representations
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Table 2
CALCULATED VALUES OF CHARACTERISTIC FREQUENCIES OF PRIMARY AND  SECONDARY

RHEODYNAMIC QUANTITIES IN CASE OF σ-CONTROLLED PROCESSES FOR GIVEN
VALUES OF RETARDATION  FREQUENCIES (WRET = 1, 2, 5 RAD/S)

frequency, to the high limit value, M’∞, at “infinite”
frequency; on the other hand, (fig. II.2), the loss modulus
shows a maximum, peak value at intermediate frequency,
corresponding to natural ε - frequency of dynamic
relaxation process, while zero value corresponds both to
zero and “infinite” frequency. For other secondary
rheodynamic quantities distinct trends are evidenced - the
absolute modulus, (fig. II.3), shows a frequency
dependence similar to that of storage modulus, with
inflection at lower frequency than in case of storage
modulus, while the corresponding loss factor, (fig. II.4),
shows a somewhat similitude with that of the loss modulus,
even if the maximum and inflection frequencies are at
lower values.

Conclusions
In the case of stress - controlled dynamic retardation

processes the set of σ-characteristic frequencies defined
in terms of model rheological parameters is obtained,
providing complete information as regards the spectrum
of linear viscoelastic behaviour.

The secondary rheodynamic quantities - including in
case of σ-controlled processes, on the hand, the storage
and loss moduli, as well as, on the other hand, the absolute
modulus and the corresponding loss factor, respectively -
result on the basis of compliance-like ones, specific
features being revealed by using the multiple criterioum
of characteristic maximum and/or inflection points.

Given the essential justification of usefulness of the set
of characteristic frequencies in case of σ - controlled
dynamic retardation processes, thoroughly attention is to
be considered jointly for consistent characterization and
appropriate evaluation of polymeric materials undergoing
dynamic stress-controlled conditions of testing.
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