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This paper studies the bidimensional pulses generation in organic materials and technical polymers starting
from a practical test functions basis, having as purpose their viscoelastic behaviour analysis. A heuristic
algorithm for generating the test function using MATLAB procedures is presented.
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The theory of hereditary elasticity or viscoelasticity is
particularly widely used for polymeric materials, whose
behaviour is linear or almost linear even under relatively
high stresses. In the literature on rheology physics, we
generally find spectral representations of the creep or
relaxation functions, (1, 2]. Various molecular theories are
constructed so that the resultant kernels are sums of certain
number of exponential terms, [2 |.

The viscoelastic and viscoplastic behaviour of organic
materials like bone, tendon or wood, as well as technical
polymers, is largely documented. It is usually modeled
using linear “Newtonian” friction, i.e., a viscous force
proportional to the deformation rate. If the experimental
results cannot be fitted with the resulting exponential
“Debye” curves, a multitude of relaxation mechanisms or
a spectrum of relaxation times is invoked.

Recent study models of the viscoelastic behaviour (well
confirmed by the experimental data) use a logarithmic
dependency of the logarithmic dependence of the force
on the strain rate, 13%. The corresponding equation of
motion is solved in the quasi-static approximation and the
solutions display just the typical deviations from the Debye
behaviour experimentally found, without any compli-
cations from multi-mechanism relaxation.

Further on, we will present a model of asymmetric
bidimensional pulses generation and propagation
simulation in organic materials and technical polymers,
based on their behaviour at pulses for high frequency input
signals (generated using asymmetrical test functions, [3,
4]%, generalized for the bidimensional case.

We will realize the simulation in the case in which we
can consider any asymmetric pulse as an element of a
Hilbert Space (vectorial, normed), in which the elements
of the generator system are particular classes of
asymmetric functions.

The complex asymmetric bidimensional pulse
formation is being made taking into consideration that on
the two axes onto which the motion is being propagated,
we are dealing with measures with separable variables
(the basic components don’t create interference effects
on the two directions).

Theoretical background
The necessity of a function based approach
We observe that, if trying to realize this analysis based
on the usual test functions (sirnilar to the Dirac functions,
found in the class of functions which differ from zero only
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on a certain limited time interval, and posses an infinite
number of continuous derivatives on the real axis), we will
encounter the problem that they can’t be generated (as
we know) by a differential equation.

The analysis should be limited to practical test functions
usage (12), defined as functions that differ from zero on a
certain interval and posses a finite number of continuous
derivatives on the whole real axis.

The advantage offered by the present model usage is
given by the fact that, due to the phenomena taking place
in a spatially limited area, this doesn’t require the use of
propagation equations, the results obtained being
independent of these.

Basic properties of practical test-functions used for
generating asymmetrical pulses in organic materials and
technical polymers

Frequently the analysis of signals on limited time
intervals requires the use of adequate mathematical
models able to generate alternating function. For obtaining
sinusoidal type fonctions able to generate signals with a
certain angular frequency, the undumped differential
equations of second order are well know.

But for obtaining pulses limited on certain time intervals
some specific models must be used. An alternative is
represented by the use of test-functions, but ideal test
functions can not be generated by a differential equation
of evolution of the type presented in paper [3].

On the the other side, a propagation phenomenon for
an ideal test function can not be taken into consideration
as in [4], because we are looking for causal pulses,
generated in a rigorous manner by an equation of evolution.
This implies the use of practical test-functions (functions
which possess a limited number of derivatives equal to
zero at the limits of the working interval and which can be
solutions of differential equations).

So we must study invariance properties of such
equations, so for the output to be represented by a function
asymmetrical as related to the middle of the working
period.

If we consider as working interval (-1, 1)the time
interval, then the middle of the interval would be the origin,
and the condition for the output {(t) to be asymmetrical
corresponds to the condition

J)=-70)
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For obtaining such a function on the time interval (-1,
1), we must begin by studying equations able to generate
symmetrical function g on this time interval so as to find a
method for translating some of their properties to
asymmetrical functions; finally, we must use Runge-Kutta
equations,[5], for studying the properties of the
mathematical models obtained.

We are looking for controlled oscillations on a limited
time interval (unlike unstable oscillations for second order
difference systems).

This would lead to a sine or cosine function, with
possibilities of joining together such working intervals for
obtaining a controlled oscillation extended in time.

Yet we are looking for general differential equations able
to generate asymmetrical pulses of different shapes (not
only sine or cosine functions). We can extend our analysis
at wavelets corresponding to PDE {6] or to equations able
to generate wavelets represented by solitary waves {7].

Both previously mentioned aspects can be joined
together if we are looking for functions similar to test-
functions having a shape similar to wavelets.

As can be noticed studying [5], practical test-functions
of second order possess a derivative with null initial and
final values. Analyzing its mathematical expression on the
whole working interval, we can notice that, this derivative
is an asymmetrical function as related to the middle of the
working interval (considered as origin), while the
symmetry of g function implies that its slope is
asymmetrical as related to the origin (the same modulus
and opposite sign).

So we must analyze the differential equations able to
generate symmetrical functions g and to study the shape
of their derivatives for different input, functions.

As it is known, a test-function on [a, bl is a C* on R

which is nonzero on (a, b) and zero elsewhere. For
example the bump-like function

pfn)=3 T U if re(-1))
0, if re(-Ll)

is a test-function on [—1,1].
On the other side, test-function as the bump-like function
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is almost equal to a constant value for 2/3 of the working
period (similar to a step-function)

Such functions can not be generated by differential
equations of evolutions; we can use differential equations
able to generate a practical test-function on (-1,1)( a ¢»
nonzero function on (-1, 1) which satisfies the boundary
conditions f®{a)={®(b)=0 for k=0,1,..,n and can be a
solution of an initial value problem on this interval).

The first and second derivatives of @, are:

~27 1
()=
A0 exn{

)= e ) @
-

40

And by simply dividing the function ¢, a(z) to @, (z)
we obtain:
0 - -27 .
@ ('[2 - 1)2 » (4)
Considering the corresponding differential equation:

) -2z
1= 6

=)

with initial values considered att_ = 0.99 as:

5= ﬁx?(m . (6)

It results a function f symmetrical as related to the middle
of the working interval.

Its derivative, a saw-teeth asymmetrical pulse, is
represented in figure 1.
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Fig.1. The function derivative (a saw-teeth asymmetiical pulse)
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The same way, the correspondence between ¢,and @)

results under the form:

67 ~2
o =%, M
=-)
By considering the corresponding differential equation:
67 -2
o=ty
(- 1)4 ®
with initial values considered at T =-0,99 as:
{ 1
o555 ®

0| 099 1 } (1)
’ { (0,99 1) P99 1

it results also a function f symmetrical as related to the
middle of the working interval.

Its derivative, an asymmetrical pulse, is represented in
figure 2.

In a similar way, for the function @,(t) we obtain the

- correspondence;

- 0,6:4-0,362'—-0,2@ an

(r’ - 1)4 ’
By considering the corresponding differential equation:
0,6¢* ~0,367% ~0,2
f{z) - > - > f
( e ~—1) (12)
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Fig.2. The function derivative (an asymmetrical pulse)
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Fig. 3. The function derivative (a sharp asymmetrical puls)

with initial values considered at t_=-0.99 as:

0,1
.f;):exp[g 992__1) (13)
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we obtain a function f symmetrical as related to the middle
of the working interval.

Its derivative, a sharp asymmetrical pulse, is represented
in figure 3.

The shape of these outputs offers also the possibility of
joining together such time intervals and the corresponding
asymmetrical pulses so as to obtain a controlled oscillation.

While at the beginning and the end of each working
interval the state-variables of the differential system are
approximately equal to zero it would be quite easy to adjust
the final values of these variables for a working-interval to
the initial values of these variables for the next working
interval: thus the cycle can continue in a controlled manner.

Results and discussions

We must point the fact that an asymmetrical pulse
represents in fact a test function for the derivative of an
input signal. By multiplying an input signal with an
asymmetrical pulse and by integrating the resulting
function on the working interval, we obtain a result
proportional to the slope of the input signal (as it can be
easily checked). The method is presented in [8], where
the input function is processed by a nonlinear second order
system.

Thus, for asymmetrical pulse generation of any shape
we can see that the pulses presented in the previous three
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Fig. 4. Bidimensional wave wrapping for the figure 1 case
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Fig.5. Bidimensional wave wrapping for the figure 2 case

examples form a system of generators in the space of the
pulses on one of the axes, so any pulse can be written
under the form:

AV6)= %000 1)

i=t
(where C;, are the expansion coefficients, to be
determined in the concrete conditions of the pulse to be
generated).

Generalization for the bidimensional case

When we are interested in generating bidimensional
pulses in organic materials [8], or studied technical
polymers profiles we can consider, as we have
remembered [9], the case in which the behaviours on the
two directions don’t appreciably interfeer, so we obtain
for the three presented situations the following
bidimensional wave wrappings (in which we have on the
axes -ox and -oy the measures u and v respectively and
on the -0z axis we have f)

We can generate any bidimensional pulse with the help
of the system of generators (overdimensioned - in the case
of our simulations realized in MATLAB) in the following
way:

FL(?)=Z:,e,-L(f) 6)

J
where ¢; are the versors of the two directions onto which
we can generate the pulses, and

5,@)=3 o). (7

=i
At the end, we have to study the output signal generated
by a second order differential equation, able to generate
an asymmetrical output signal, corresponding to an input
signal represented by a very short pulse, so that its stability
to this kind of perturbations can be checked.
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Fig. 6. Bidimensional wave wrapping for the figure 3 case

For this, we consider the differential equation:

4 L. +0,9)
F 2067 20367202 oy (x ,z)
1_ 0,01 (18)

(r 1

with zero initial conditions (the external pulse being
represented by a short Gaussian pulse received at the
moment 7, =-0,9). The derivative of this output signal is
represented in figure 7.
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Fig. 7. The derivative of the output signal

The final bidimensional representation of the final out-
put signal wrapping for the organic material studied is, ac-
cording to the MATLAB simulation, the one in figure 8.

Conclusions

This work presents a model of asymmetric
bidimensional pulses generation and propagation
simulation in organic materials and technical polymers,
based on their behaviour at pulses for high frequency input
signals, generalized for the bidimensional case.

Taking into discussion the action of the pulse on a
direction, we obtain as a first consequence, a possible
application, the more rapid estimation of the acceleration
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Fig. 8. Final output signal wrapping for the organic material

by modification of the input signal, corresponding to the
velocity.

Another application can be represented by the phase
detection, by multiplication of the alternate input signal
with an assymetrical function and then integrating the
resulting function, we obtain a result proportional with the
amplitude of a sinusoidal input function.

It can be observed, in figure 7, that a major influence
appears at the end of the interval after a time of
approximatively 1.8 units. So, the final output signal can
be considered as a noncausal pulse from the perspective
of an external observer which studies the input and output
system signals on the interval (0,1) for example. As
opposed to the aspects regarding the noncausal waves as
possible solutions of the wave equation, the noncausal
pulse generated by the previous equation appears with
approximative zero conditions, existing for the state
variables of an unique system (a single point).

The term “approximative zero conditions” implies the
use of a phenomena multilevel analysis.
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After 5 h some peaks appear different from natural
frequencies. Some of them disappear in final frequency
spectrum, but new appears again. This phenomenon is
determined by sediments resulted in grease degradation
process. They alter frequency spectrum just like race waves
but, there is a difference, because they appear and
disappear in running process. In order to be able to
distinguish the frequencies spectra disturbances in tables
4 and 5, the natural frequencies due to inner ring rotation
and the bearings race waves natural frequencies
respectively are presented.

Conclusions

Degradation grease phenomenon is a very complex one.
It has main influences to reliability and vibration level of
ball bearings lubricated “for life”.

Time domain signal processing, reflects very clear
degradation process using diagnosis value K (t).

Frequency domain analysis shows degradation process
through sediments which adhere and detach from race
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ways. These sediments generate new peaks in frequency
spectrum.

Grease degradation process study using vibration tests
represents one of the future possibilities to detect greases
reserve life.
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