ABOUT INDEXING EDITORIAL BOARD ARCHIVES AUTHOR GUIDELINES SUBMIT PAPER NEWS, EVENTS AUTHOR'S PAGE CONTACT
Materiale Plastice
Cite as: Mater. Plast.
https://doi.org/10.37358/Mat.Plast.1964

OSIM Nr. R102356
ISSN Print 0025-5289
ISSN Online 2668-8220
Materiale Plastice - Latest Issue

Latest Issue >>>
ARCHIVES
   Volume 60, 2023
   Volume 59, 2022
   Volume 58, 2021
   Volume 57, 2020
   Volume 56, 2019
   Volume 55, 2018
   Volume 54, 2017
   Volume 53, 2016
   Volume 52, 2015
   Volume 51, 2014
   Volume 50, 2013
   Volume 49, 2012
   Volume 48, 2011
   Volume 47, 2010
   Volume 46, 2009
   Volume 45, 2008
   Volume 44, 2007
   Volume 43, 2006
   Volume 42, 2005
   Volume 41, 2004
   Volume 40, 2003
 
<<<< back

Materiale Plastice (Mater. Plast.), Year 2022, Volume 59, Issue 2, 111-118

https://doi.org/10.37358/MP.22.2.5590

Paulina Spanu, Bogdan Felician Abaza

Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model


Abstract:
Highlighting the properties of polymer composites is a complex process given their great diversity and the wide range in which their characteristics could vary. An Artificial Neural Network model for predicting tensile strength was designed using LabVIEW software. The proposed model was developed for randomly reinforced polymeric composite materials with 30%, 40% and 50% fiber-glass. Volume fraction of glass fibre has represented the independent variable for this study. The dependence of the tensile strength on the volume fraction was investigated and highlighted by modelling using neural networks. The designed Artificial Neural Network behaves as a computational system that process data input into a desired output using a network of functions composed of layers. The training process was developed with different Artificial Neural Network architectures with two hidden layers to produce the best prediction results. For each hidden layer the number of neurons was varied be-tween 3 to 50.


Keywords:
artificial neural network; composite; LabVIEW; tensile strength

Issue: 2022 Volume 59, Issue 2
Pages: 111-118
Publication date: 2022/7/1
https://doi.org/10.37358/MP.22.2.5590
download pdf   Download Pdf Article
Creative Commons License
This article is published under the Creative Commons Attribution 4.0 International License
Citation Styles
Cite this article as:
SPANU, P., ABAZA, B.F., Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model, Mater. Plast., 59(2), 2022, 111-118. https://doi.org/10.37358/MP.22.2.5590

Vancouver
Spanu P, Abaza BF. Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model. Mater. Plast.[internet]. 2022 Apr;59(2):111-118. Available from: https://doi.org/10.37358/MP.22.2.5590


APA 6th edition
Spanu, P., Abaza, B.F. (2022). Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model. Materiale Plastice, 59(2), 111-118. https://doi.org/10.37358/MP.22.2.5590


Harvard
Spanu, P., Abaza, B.F. (2022). 'Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model', Materiale Plastice, 59(2), pp. 111-118. https://doi.org/10.37358/MP.22.2.5590


IEEE
P. Spanu, B.F. Abaza, "Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model". Materiale Plastice, vol. 59, no. 2, pp. 111-118, 2022. [online]. https://doi.org/10.37358/MP.22.2.5590


Text
Paulina Spanu, Bogdan Felician Abaza,
Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model,
Materiale Plastice,
Volume 59, Issue 2,
2022,
Pages 111-118,
ISSN 2668-8220,
https://doi.org/10.37358/MP.22.2.5590.
(https://revmaterialeplastice.ro/Articles.asp?ID=5590)
Keywords: artificial neural network; composite; LabVIEW; tensile strength


RIS
TY - JOUR
T1 - Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model
A1 - Spanu, Paulina
A2 - Abaza, Bogdan Felician
JF - Materiale Plastice
JO - Mater. Plast.
PB - Materiale Plastice SRL
SN - 2668-8220
Y1 - 2022
VL - 59
IS - 2
SP - 111
EP - 118
UR - https://doi.org/10.37358/MP.22.2.5590
KW - artificial neural network
KW - composite
KW - LabVIEW
KW - tensile strength
ER -


BibTex
@article{MatPlast2022P111,
author = {Spanu Paulina and Abaza Bogdan Felician},
title = {Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model},
journal = {Materiale Plastice},
volume = {59},
number = {2},
pages = {111-118},
year = {2022},
issn = {2668-8220},
doi = {https://doi.org/10.37358/MP.22.2.5590},
url = {https://revmaterialeplastice.ro/Articles.asp?ID=5590}
}


Download article Citations:
 PlainText citation Plain Text
 Text citation Text
 GoogleScholar citation Google Scholar


Downloads number: 30
<<<< back
 
  Search Authors
Crossref Member Badge
 DOI  logo
 Gold Open Access | Source=http://www.plos.org/  | Author=art designer at PLoS
Creative Commons License