ABOUT INDEXING EDITORIAL BOARD ARCHIVES AUTHOR GUIDELINES SUBMIT PAPER NEWS, EVENTS AUTHOR'S PAGE CONTACT
Materiale Plastice
Cite as: Mater. Plast.
https://doi.org/10.37358/Mat.Plast.1964

OSIM Nr. R102356
ISSN Print 0025-5289
ISSN Online 2668-8220
Journal Metrics
* Impact factor 2019: 1.517
* 5-Year IF: 1.179
* CiteScore: 2.4
* H index: 22
Materiale Plastice - Latest Issue

Latest Issue >>>
ARCHIVES
   Volume 57, 2020
   Volume 56, 2019
   Volume 55, 2018
   Volume 54, 2017
   Volume 53, 2016
   Volume 52, 2015
   Volume 51, 2014
   Volume 50, 2013
   Volume 49, 2012
   Volume 48, 2011
   Volume 47, 2010
   Volume 46, 2009
   Volume 45, 2008
   Volume 44, 2007
   Volume 43, 2006
   Volume 42, 2005
   Volume 41, 2004
   Volume 40, 2003
 
<<<< back

Materiale Plastice (Mater. Plast.), Year 2020, Volume 57, Issue 3, 160-173

https://doi.org/10.37358/MP.20.3.5390

Nicusor Baroiu, Georgiana-Alexandra Costin, Virgil Gabriel Teodor, Dumitru Nedelcu, Valentin Tabacaru

Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks


Abstract:
Polymeric materials are synthetic macromolecular products, of which, by mechanical or thermal processing, objects of various shapes can be obtained, with wide uses in industry and commerce. This paper deals with the roughness of surfaces obtained during drilling of three polymeric materials: polyamide - PA6, polyacetal - POM-C and high density polyamide - HDPE 1000. In the experimental research was used a EMCO MILL 55 milling machine numerical controlled and HS steel helical drills with two straight cutting edges with the diameter of Ø8 mm and Ø10 mm, respectively. Experimental determinations consisted in drilling of the polymeric materials by modifying some parameters of the cutting regime, and determining the roughness of the surface of the holes machined, using the Mitutoyo Surftest SJ-210 rough meter. The purpose of the paper is to predict the roughness of the machined surfaces as one of the important surface quality indicators by using a geometrical model and an artificial neural network (ANN) methodology.


Keywords:
roughness; helical drill; polymeric materials; artificial neural network (ANN)

Issue: 2020 Volume 57, Issue 3
Pages: 160-173
Publication date: 2020/9/30
https://doi.org/10.37358/MP.20.3.5390
download pdf   Download Pdf Article
Creative Commons License
This article is published under the Creative Commons Attribution 4.0 International License
Citation Styles
Cite this article as:
BAROIU, N., COSTIN, G., TEODOR, V.G., NEDELCU, D., TABACARU, V., Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks, Mater. Plast., 57(3), 2020, 160-173.

Vancouver
Baroiu N, Costin G, Teodor VG, Nedelcu D, Tabacaru V. Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks. Mater. Plast.[internet]. 2020 Jul;57(3):160-173. Available from: https://doi.org/10.37358/MP.20.3.5390


APA 6th edition
Baroiu, N., Costin, G., Teodor, V.G., Nedelcu, D. & Tabacaru, V. (2020). Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks. Materiale Plastice, 57(3), 160-173. https://doi.org/10.37358/MP.20.3.5390


Harvard
Baroiu, N., Costin, G., Teodor, V.G., Nedelcu, D., Tabacaru, V. (2020). 'Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks', Materiale Plastice, 57(3), pp. 160-173. https://doi.org/10.37358/MP.20.3.5390


IEEE
N. Baroiu, G. Costin, V.G. Teodor, D. Nedelcu, V. Tabacaru, "Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks". Materiale Plastice, vol. 57, no. 3, pp. 160-173, 2020. [online]. https://doi.org/10.37358/MP.20.3.5390


Text
Nicusor Baroiu, Georgiana-Alexandra Costin, Virgil Gabriel Teodor, Dumitru Nedelcu, Valentin Tabacaru,
Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks,
Materiale Plastice,
Volume 57, Issue 3,
2020,
Pages 160-173,
ISSN 2668-8220,
https://doi.org/10.37358/MP.20.3.5390.
(https://revmaterialeplastice.ro/Articlegs.asp?ID=5390)
Keywords: roughness; helical drill; polymeric materials; artificial neural network (ANN)


RIS
TY - JOUR
T1 - Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks
A1 - Baroiu, Nicusor
A2 - Costin, Georgiana-Alexandra
A3 - Teodor, Virgil Gabriel
A4 - Nedelcu, Dumitru
A5 - Tabacaru, Valentin
JF - Materiale Plastice
JO - Mater. Plast.
PB - Materiale Plastice SRL
SN - 2668-8220
Y1 - 2020
VL - 57
IS - 3
SP - 160
EP - 173
UR - https://doi.org/10.37358/MP.20.3.5390
KW - roughness
KW - helical drill
KW - polymeric materials
KW - artificial neural network (ANN)
ER -


BibTex
@article{MatPlast2020P160,
author = {Baroiu Nicusor and Costin Georgiana-Alexandra and Teodor Virgil Gabriel and Nedelcu Dumitru and Tabacaru Valentin},
title = {Prediction of Surface Roughness in Drilling of Polymers using a Geometrical Model and Artificial Neural Networks},
journal = {Materiale Plastice},
volume = {57},
number = {3},
pages = {160-173},
year = {2020},
issn = {2668-8220},
doi = {https://doi.org/10.37358/MP.20.3.5390},
url = {https://revmaterialeplastice.ro/Articlegs.asp?ID=5390}
}
<<<< back
 
  Search Authors
Crossref Member Badge
 DOI  logo
 Gold Open Access | Source=http://www.plos.org/  | Author=art designer at PLoS
Creative Commons License