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Polymeric fixed partial prosthesis represents an important part of the prosthetic treatment. Their presence in
the oral cavity could lead to fracture them and to alter the final prosthetic treatment. Time Domain Optical
Coherence Tomography can be used as a noninvasive evaluation method and 3D reconstructions which
could generate a real forecast on those prosthesis in the oral cavity environment.
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A fixed partial prosthesis should be well fabricated in
order to maintain the health of the pulpal, periodontal and
dental tissues from the time of tooth preparation until
delivery of the definitive prosthesis [Gegauff and Holloway,
2001]. In order to achieve optimal tissue health the dental
prosthesis must have good marginal fit, proper contour and
smooth surfaces. The longer the period of time in which a
dental prosthesis is in use the better fabricated it must be
in order to ensure for proper tissue health [Shillinburg et al,
1997]. According to Rosenstiel [2001] the biologic category
should include pulpal and tooth fracture protection,
maintenance of periodontal health and tooth position and
occlusal compatibility. Gingival health is very important in
fixed partial prosthesis where the master impressions and
cementation are to be completed. Imflamed gingival
tissues can make these moisture sensitive procedures very
difficult. As a result, many authors suggested the use of
interim prosthesis [Vahidi, 1987; Shillimburg et al, 1997,
Gegauff and Holloway, 2001, Gratton and Aquilino, 2004].
If any of these are not properly fabricated and maintained,
inflammation and recession of the free gingival margin
can occur [Waerhaug and Zander, 1957; Donaldson, 1973,
Burns et al, 2003]. A polymeric fixed partial prosthesis
should be well fabricated in order to withstand stresses
produced during mastication and prevent displacement
[Gegauff and Holloway, 2001, Gratton and Aquilino, 2004].
Multiple authors have studied the amount of stress and
force a fixed prosthesis must withstand while in function.
The average chewing functional load per tooth on a fixed
prosthesis ranged 2 – 22 N with an increase in the load of
15 % during swallowing [Bates et al, 1976; DeBoever et al
1978, Neill et al, 1989].

However, other investigators found that this load had a
higher range of 20 – 90 N [Anderson, 1956, Gibbs et al,
1981]. The chewing frequency in humans has been found
to be about 1.25 to 2 Hz [Carlson 1974, Neill and Howard,
1988] with a definitive dental prosthesis required to undergo
3 x 106 to 107 load cycles in a 5 – 15 year lifetime depending
on the author [Bates et al 1976, Wiskott et al 1994].
Stresses on polymeric prosthesis occur mostly from
masticatory forces. The polymeric prosthesis must be able
to withstand functional forces as mastication without
fracturing. The polymeric fixed partial prosthesis used in
this paper were made from polymethyl methacrylate. The
polymerization process that turns methyl methacrylate into

polymethyl methacrylate or PMMA is credited to German
chemists, Fittig and Paul, in 1877. The next couple of
decades saw minimal use of PMMA until the early 1930’s
when a german company  began to produce PLEXIGLAS
[Herman, 1985]. In 1937, Dr. Walter Wright was the first to
describe PMMA’s use with denture fabrication. The use of
PMMA in fixed partial prosthesis appeared in the literature
in 1940 for the fabrication of inlays, crowns and fixed partial
dentures [Peyton 1975, Rueggeberg, 2002]. Auto-
polymerising PMMA appeared in the late 1940’s and was
shortly introduced into clinical use in dentistry for
provisional fixed prostheses [Devlin, 1984]. Since its
appearance, PMMA quickly became and currently is the
most frequently used material for provisional fixed partial
prosthesis [Kaiser 1985, Christensen 1997]. Some current
product names for PMMA include Caulk temporary bridge
resin [Dentsply], Vita VM CC [Vident] and Jet [Lang Dental].

Optical coherence tomography (OCT) is a noncontact
imaging modality that provides cross-sectional images of
biological structures, in-vivo and non-invasively, by detecting
light backscattered from tissue. In ophthalmology, OCT is
primarily used to image the retina and optic nerve, in order
to detect and monitor a variety of retinal diseases and optic
neuropathies. The use  of OCT has increased in recent years,
due to software and hardware improvements [1-4] rapid
collection of high-resolution, three-dimensional (3D)
datasets, and clinical studies confirming the reproducibility
[5-11] and disease-discriminating capability [12-17]. OCT
is now becoming accepted as a reliable tool for clinicians
assessing dental structure that allow  the measurements.

Contrast agents are substances designed to alter the
detected signal of a biological image in a way that allows
the region containing the agent to be discernible. For
example, in X-ray imaging, high atomic number elements
such as iodine are routinely used to improve delineation of
blood vessels and organs by the absorption of incident X-
rays[18].  Medical imaging techniques such as X-ray,
magnetic resonance imaging (MRI), computed
tomography and ultrasound each may be augmented by
contrast agents approved by the Federal Drug
Administration (FDA) [18,- 21]. Gold nanoparticles can be
nanoengineered to be highly backscattering at the near
infrared (NIR) wavelengths used in OCT imaging.antibody
conjugation [22, 23]. However there are some papers
related to application of OCT in Dentistry [24- 29].
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Experimental part
34 fixed partial prosthesis were obtained from PMMA by

conventional procedure. All the samples were investigated
by Time Domain Optical Coherence Tomography as a non

invasive method. The scanning procedure was from
occlusal to cervical areas of the prosthesis on the vestibular
face of the structures. The scanning times were 40 to 50 s
for 350 slices per sample. The targeted areas were

Fig. 1. Optical coherence tomography system architecture.

Fig. 2. 2D evaluation (C scan) of the investigated area; on the 3D
reconstruction it is possible to evaluate the entire volume of the

polymer.

Fig. 3. 2D investigation (C scan) inside the polymer structure
(slide 78 from 350, zoom 8 degree, aprox. 0.56 mm inside the

structure); note the porous aspect of the material.
cFig. 6. B scan and C scan showing a material defect

(a) at aprox. 0.18 mm from the surface; this defect
goes deep inside the structure aprox. 0.45 mm.

Fig. 4. Aeric inclusion observed on the B scan evaluation inside
the polymeric structure at aprox. 0.9 mm from the surface (b); the
vertical dimension of the defect is aprox. 1.1 mm (c) and the total

vertical dimension of the polymer structure is 2.5 mm (a).

Fig. 5. B scan evaluation showing no other significant
material defects inside the polymer structure.
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identified with a confocal channel working at 970 nm. The
zoom scan was off; the scanning angle was at 18 degree.
The 2D and 3D images results were obtained and were
evaluated in order to observe the internal structure of the
prosthesis. The aim of this study was to observe the
eventual material defects that could lead to fracture lines
in the entire prostheses structure and to the failure of the
prosthetic treatment.

Results and discussions
All the samples were investigated by Optical Coherence

Tomography working in Time Domain combining with a
confocal channel in order to evaluate the structure of the
polymeric prosthesis (fig. 1). The confocal channel was
used in order to point the area of the investigations in
surface and that with the OCT the investigations were
performed deeper in the polymeric material. The results
show that there are no defects at the surface (fig. 2). Inside
the polymeric material the OCT revealed the porous aspect
of the dental materials (fig. 3). In order to have a better
evaluation of the polymer structure a 3 D reconstruction
was performed. The aeric inclusions were spotted in the
occlusal area and that the magnitudes of those defects
were evaluated (fig. 4 - 7). None of these defects were
surface open.

Conclusions
In conclusion, noninvasive evaluations methods ,

especially OCT working in Time Domain mode, has a great
capability to evaluate the internal structure of the polymeric
material used for the fixed partial prosthesis considered.
Most of these defects were localized in the occlusal areas
of the fixed partial prosthesis and than could lead to
fractures and failures of the prosthetic treatment. This is
why a noninvasive evaluation of these prosthesis, such as
optical coherence tomography, is need it to be done before
insertion in the oral cavity.
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